Journal of Organometallic Chemistry, 258 (1983) 297-305 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ALKENYL-METALLKOMPLEXE

III *. cis / trans- UND E / Z-ISOMERIE BEI ALKENYL-KOMPLEXEN DES CHROMS, MOLYBDÄNS UND WOLFRAMS [2]

GEORG GRÖTSCH und WOLFGANG MALISCH*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (Bundesrepublik Deutschland)

(Eingegangen den 24. Juni 1983)

Summary

The reaction of the alkylmetal complexes $Cp(CO)_3MR$ (R = Me, Et; M = Cr, Mo, W) (1a-1d) with Me₃P yields the acetyl complexes *trans*-Cp(CO)₂-(Me₃P)MC(O)R (2a-2d), which are alkylated by MeOSO₂F to give the carbene complexes [*trans*-Cp(CO)₂(Me₃P)M=C(OMe)R]SO₃F (3a-3d). These are rapidly converted by Me₃P=CHR' (R' = H, SiMe₃) into the alkenyl complexes *cis/trans*-Cp(CO)₂(Me₃P)MC(OMe)=CHR (R = H, Me) (4a-4d). When R = Me the compounds show *cis/trans* isomerism with respect to the ligands at the basis of the tetragonal monopyramidal complexes, as well as *E/Z*-isomerization around the carbon-carbon double bond. The four stereoisomers *cis*-(*E*), *cis*-(*Z*), *trans*-(*E*), *trans*-(*Z*) are structurally characterized by ¹H and ¹³C NMR spectroscopy. On thermal treatment preferred formation of *cis*-(*E*) is observed in the case of R = Me and M = W.

Alkenyl-Eisenkomplexe Cp(CO)(Me₃P)FeC(OMe)=C(R)R' (R = R' = H, Me; R = H, R' = Me) sind aus den entsprechenden Carbenkomplexen durch Deprotonierung des β -Kohlenstoffs mit der starken Base Trimethyl(methylen)phosphoran zugänglich [3]. Es erfolgt kein nucleophiler Angriff des Ylids am Carbonyl- oder Carbenkohlenstoff [4], ausserdem wird im Falle des Vertreters mit methylsubstituiertem β -Kohlenstoff stereospezifische Bildung des Z-Isomeren beobachtet [3].

Wir haben jetzt die Deprotonierungsreaktion mit Yliden zur Gewinnung von tetragonal monopyramidal konfigurierten Alkenylkomplexen des Typs $Cp(CO)_2$ -(Me₃P)MC(OMe)=CHR (R = H, Me; M = Cr, Mo, W) ausgenutzt, wobei uns vor allem die Frage der E/Z-Isomerie des Kohlenstoff-Liganden interessierte. Weitere

^{*} II. Mitteilung s. Ref. 1. Diese Ergebnisse wurden auf dem 29. IUPAC-Congress (Köln 1983) vorgestellt. Abstracts of Papers, p. 80.

Stereoisomere sind für diese Komplexe aufgrund der Möglichkeit zur *cis / trans*-Anordnung der Liganden an der tetragonalen Basis zu erwarten [5].

Die Synthese der gewünschten Vinylkomplexe geht von den Alkyl-Metallverbindungen 1a-1d aus, die mit Trimethylphosphan in bekannter Weise gemäss Gl. 1a die *trans*-Acetylkomplexe 2a-2d liefern [6]. 2a-2d sind mit MeOSO₂F in Benzol problemlos am Sauerstoff zu kationischen Carbenkomplexen alkylierbar [7], die in Form der SO₃F-Salze 3a-3d isoliert werden.

3a-3d, die ausschliesslich als *trans*-Isomere anfallen, stellen gelbe, kristalline, in Acetonitril und Nitromethan gut lösliche Feststoffe dar, die mit Ausnahme von 3akurzzeitig an der Luft stabil sind. 3a zersetzt sich selbst unter N₂-Atmosphäre ab -10° C innerhalb von 48 Stunden. Spektroskopische Daten der Komplexe 3a-3dsiehe Tab. 1.

3a - 3	d .	+ (F	Ме ₃ ∕Iе ₃ Р 8′= Н,	P=C CH ₂ R SiM	нк′ (]so ₃ f е ₃)	$Me_{3}P$ C CHR C HR C CHR C	(2)
		4a.	4ь	4c	4d	(4 n-4d)	
-	М	Cr	Мо	Мо	W	(40-40)	
	R	н	н	Me	Me		

3a-3d reagieren als Suspension in Pentan oder Ether bei -50 bis -30° C mit dem Ylid Me₃P=CH₂ bzw. Me₃P=CHSiMe₃ nahezu quantitativ zu den gelb bis orangefarbenen Alkenyl-Metallverbindungen **4a-4d**. Als weiteres, durch einfaches Filtrieren abtrennbares Produkt, entsteht das Phosphoniumsalz [Me₃PCH₂R'][SO₃F] (R' = H, Me₃Si).

Analog zu (2) deprotoniert $Me_3P=CH_2$ den Carbenkomplex $[Cp(CO)_3-W=C(OMe)Me]SO_3F$ (5) zur Alkenylverbindung $Cp(CO)_3WC(OMe)=CH_2$ (6). 4a-4d werden in (2) als Gemisch von *cis*- und *trans*-Isomer isoliert, wobei auffällt, dass deren Verhältnis (ermittelt aus dem ¹H-NMR-Spektrum) von der eingesetzten Base abhängt:

	4 a	4b	4c	4d		21	
				Ē	Z	E	Z
cis	37	36	44	32	13	47	5
trans	63	64	56	41	14	41	7
Base	Me ₃ F	P=CH ₂		Me ₃ P	=CH ₂	Me ₃ P	=CHSiMe ₃

Da die *trans*-Carbenkomplexe **3a–3d** bei Raumtemperatur weder im festen Zustand noch in Lösung in die *cis*-Form isomerisieren und auch für die Alkenylkomplexe eine *trans-cis*-Isomerisierung durch "inverse" Pseudorotation energetisch relativ anspruchsvoll sein dürfte [5], muss für diesen Vorgang eine Zwischenstufe verantwortlich sein. Als solches käme zum Beispiel das Metallcarben-Ylidaddukt $[Cp(CO)_2(Me_3P)MC(OMe)(Et)CH_2PMe_3]SO_3F$ in Frage [8]. Wahrscheinlich erfolgt aus diesem heraus auch die Deprotonierung zum Alkenylkomplex durch weiteres Ylid, wobei das chirale α -Kohlenstoffatom für die zur Bildung des *E*- und *Z*-Isomeren der η^1 -(1-Methoxy)-1-propenyl-Komplexe **4c**, **4d** (s. Gl. 3) notwendige, stereochemische Differenzierung sorgen könnte.

Die Strukturzuordnung in (3) erfolgte unter der inzwischen hinreichend abgesicherten Annahme [3], dass der Betrag von ${}^{4}J(\text{HCCMP})$, ${}^{5}J(\text{HCCCMP})$ und ${}^{3}J(\text{CCMP})$ bei einer *trans*-Stellung des Protons bzw. der Methylgruppe zum Übergangsmetallrest grösser ist als bei einer *cis*-Stellung (vgl. Tab. 2 und 3). Damit ermittelt sich für die Deprotonierung von 3d mit Me₃P=CH₂ das *cis*-(*E* + *Z*)/*trans*-(*E* + *Z*)-Verhältnis von 4d zu 45/55, das sich bei Verwendung von Me₃P=CHSiMe₃ als Base nach 52/48 verändert. Beim Einsatz des Ylids mit der sterisch anspruchsvolleren Carbanionfunktion reduzieren sich *cis*-(*Z*) und *trans*-(*Z*) gleichmässig zugunsten von *cis*-(*E*). Aus Modellbetrachtungen hierzu geht hervor, dass in der *Z*-Form die in β -Stellung fixierte Methylgruppe dem Phosphanliganden sehr nahe kommt und zwar sowohl bei *cis*-, als auch bei *trans*-konfiguriertem Metallatom.

¹ H-NMR ⁴					³¹ P-NMR ^a	¹⁹ F-NMR 4	IR ^b	
8(C ₅ H ₅) (d,5H) (³ J(HCMP))	δ(OCH ₃) (s,3H)	8(CH ₂ R) ^c (d,3H bzw. q, 2H) (^{3/4} J)	δ(CH ₃ P) (d,9H) (² J(HCP))	8(CH ₃) (t,3H) (³ J(HCCH))	8(³¹ P) (¹ <i>J</i> (³¹ P ¹⁸³ W))		v(COs)	ν(CO _{as})
5.23	4.43	3.10	1.82	1	43.05	37.38	1975(m)	1899(vc)
(2.0)		(1.2)	(10.1)					(m)///m
5.58	4.32	3.06	1.75	•	13.85	37 26	1083/c)	1001/1/6
(1.4)		(0.3)	(6.3)					(0) 10/1
5.53	4.35	3.15	1.59	1.01	15.32	37.83	1979(m)	1900/vc)
(1.5)		(7.2)	(10.3)	(7.2)			1960(m)	1882(s)
5.84	4.28	3.29	1.78	1.10	- 19.16	37.73	1972(m)	1889(ve)
(1.4)		(7.1)	(6.9)	(7.1)	(160.8)			

SPEKTROSKOPISCHE DATEN DER CARBENKOMPLEXE 3a-3d

TABELLE 1

TABELLE 2

VINYLKOMPLEXE 4a-4d	
DER	
SPEKTROSKOPISCHE DATEN	

	¹ H-NMR ⁴					³¹ P-NMR ⁴ 5, ³¹ 5,	IR ^b		
	8(C ₅ H ₅) (d,5H)	8(CH _A /CCH _{3A}) [/]	8(CH _B //CCH _{3B})/	δ(OCH ₃) (s,3H)	8(CH ₃ P) (d,9H) (² J(HCP))	o(^{r)} (¹ J(³¹ P- ¹⁸³ W)	₽(CO _s)	₽(CO _{as})	µ(C=C)
4a trans	4.44	4.15	4.97	3.38	1.13	39.58	1956(m)	1869(s)	1580(w)
	(1.3)	(1.2;3.4) °	(1.2;4.8) ^c		(0.6)				
cis	4.48	4.66	5.28	3.68	1.06	53.31	1940(s)	1869(s)	-1580(w)
	(0.6)	(1.4;0.4) ^c	(1.4;0.6) ^c		(0.6)				
4b trans	4.90	4.28	5.36	3.38	1.15	I	1955(m)	1864(s)	1582(w)
	(1.5)	(1.1;0.3) ^c	(1.1,0.3)		(0.6)				
cis	5.03	4.21	5.36	3.66	1.12	ł	1955(s)	1864(s)	1582(w)
	(0.4)	(1.1;0.3)	(1.1;0.3) ^c		(0.6)				
4c trans - (E)	4.94	5.12	1.84	3.52	1.15	19.89	1970(s)	1884(s)	1578(w)
	(1.8)	$(6.6;4.1)^d$	(6.6;3.2) ^e		(0.6)				
trans - (Z)	4.90	1.93	5.33	3.59	1.15	22.62	1970(s)	1884(s)	1578(w)
	(1.5)	(6.5;1.8)	(6.5;5.1) ^d		(0.0)				
cis - (E)	4.97	5.58	1.84	3.52	1.16	37.29	1964(m)	1870(vs)	1590(w)
	(1.4)	(6.6;1.7) ^d	(6.6;3.2) ^e		(6.1)				
cis - (Z)	5.06	2.04	5.48	3.64	1.18	22.63	1964(m)	1870(vs)	1590(w)
	(0.6)	(6.6;0.6) °	(6.6;0.5) ^d		(0.1)				
4d trans-(E)	4.81	5.29	1.92	3.66	1.20	- 19.16	1925(m)	1815(s)	1570(w)
	(1.8)	(6.8;5.3) ^d	(6.8;3.5) °		(6.3)	(238.2)			
trans -(Z)	4.65	2.02	5.33	3.65	1.20	-18.18	1925(m)	1815(s)	1570(w)
	(1.7)	(6.5;1.5) °	(6.5;4.3) ^d		(6.3)	(196.5)			
cis - (E)	5.04	5.62	2.11	3.55	1.19	-14.83	1935(m)	1845(s)	1604(w)
	(0.8)	$(6.5; 1.8)^d$	(6.5;1.4) ^e		(6.3)	(220.3)			
cis - (Z)	4.93	2.11	5.56	3.55	1.19	- 18.38	1935(s)	1845(s)	1604(w)
	(1.5)	(6.5;1.4) °	(6.5;1.2) ^d		(6.3)	(201.0)			

mu2 • \ • \ 1, 111 j ·(/ TMI) ⁷ In C₆H₆/C₆D₆. ⁷ In Fentan. ² (dd, 1H, ⁻7(HCH), ⁻7(HCCMF)). ⁻ (dq, 1H, ⁻7(H) Metallrest cis(trans)-ständigen Substituenten H bzw. CH₃.

301

Isomer	8(C (d.2C) bzw. (² J(PMC); ¹	:0) (d,1C,1C) J ⁽¹³ C ¹⁸³ W))	8(<i>C</i> (OMe)) (d.1C) (² J(PMC))	8(CHMe) (s,1C)	ð(C ₅ H ₅)	8(OCH ₃) (s,1C)	8(CH ₃ P) (d,3C) (¹ J(PC))	8(CH ₃) (s,1C)	
trans -(E)	228.78 (17 9· 166 3)		160.39 (12-5)	94.00	89.45	56.14	20.31	1.31	
trans -(Z)	229.79		11 1)	106.51	89.60	57.09	20.50 24 B)	10.54	
cis -(E)	231.62	234.71 (7.5)	168.90 (10.0)	110.40	91.40	54.24	18.93	14.59	
cis-(Z)	244.07 (21.03)	249.02 (6.9)	(10.0) (10.0)	131.34	91.25	60.84	(3.2.0) 19.67 (34.3)	18.95	
" In C ₆ D ₆ .									

 $^{13}\mathrm{C}\text{-}(^1\mathrm{H}\text{)}\text{-}\mathrm{NMR}\text{-}\mathrm{DATEN}$ Der Stereoisomeren von 40°

TABELLE 3

Fig. 1. Isomerenzusammensetzung von 4d in Abhängigkeit von der Reaktionszeit bei 60°C in Benzol.

Trotzdem reichert sich beim Erhitzen des Isomerengemisches von 4d in Benzol auf 60°C cis-(Z) auf Kosten von cis-(E), trans-(E) und trans-(Z) [8] an (vgl. Fig. 1).

Wir erklären dies mit der besseren elektronischen Stabilisierung von cis-(Z), in dem sich Donor- und Acceptorligand jeweils in *trans*-Stellung an der olefinischen Doppelbindung gegenüberstehen. Z. Zt. versuchen wir eine Auftrennung der Stereoisomeren von **4c,4d**, um deren Isomerisierungsverhalten zu studieren.

Experimenteller Teil

1. trans-Dicarbonyl(η^5 -cyclopentadienyl)[methoxy(methyl)carben](trimethylphosphan)chrom(II)-fluorosulfonat (3a). Zu einer Lösung von 0.41 g (1.40 mmol) 2a in 20 ml Benzol werden 0.20 g (1.75 mmol) MeOSO₂F, gelöst in 10 ml Benzol, getropft. Nach leichter Eintrübung der Lösung fällt ein grüngelber Niederschlag, der nach 26 h Rühren abgetrennt, mit 2 ml Benzol gewaschen und nach Trocknen im Vakuum aus 10 ml Acetonitril/Toluol (1/6) umkristallisiert wird. 3a zersetzt sich bereits ab -10°C langsam. Ausb. 0.34 g (56%). Gelbe Kristalle. Schmp. 92°C (Zers.). Gef. C, 37.52; H, 4.50. C₁₃H₂₀CrFO₆PS (406.34) ber.: C, 38.43; H, 4.96%.

2. trans-Dicarbonyl(η^{5} -cyclopentadienyl)[methoxy(methyl)carben](trimethylphosphan)molybdän(II)-fluorosulfonat (**3b**). Analog zu 1. werden aus 748 mg (0.20 mmol) **2b** und 282 mg (2.40 mmol) MeOSO₂F 810 mg (90%) **3b** hergestellt. Schmp. 146°C. Gef. C, 34.39; H, 4.50. C₁₃H₂₀FMoO₆PS (450.27) ber.: C, 34.68; H, 4.48%.

3. trans-Dicarbonyl(η^5 -cyclopentadienyl)[ethyl(methoxy)carben](trimethylphosphan)molybdän(II)- bzw. -wolfram(II)-fluorosulfonat (3c/3d). Analog zu 1. werden aus 0.39 g (1.11 mmol) 2c/ 0.49 g (1.12 mmol) 2d und 0.13 g (1.11 mmol)/0.21 g (1.82 mmol) MeOSO₂F 0.39 g (76%) 3c bzw. 0.50 g (80%) 3d erhalten. Gelbe Kristalle. Schmp. 105°C (Zers.)/113°C (Zers.). 3c: Gef. C, 35.32; H, 4.43. C₁₄H₂₂FMoO₆PS (464.30) ber.: C, 36.22; H, 4.78%. 3d: Gef. C, 29.84; H, 3.86. C₁₄H₂₂FO₆PSW (552.21) ber.: C, 30.45; H, 4.02%.

4. cis / trans-Dicarbonyl(η^{5} -cyclopentadienyl)[η^{1} -2-(methoxy)vinyl](trimethylphos-

phan)chrom(II) (4a). Eine Aufschlämmung von 0.27 g (0.66 mmol) 3a in 10 ml Ether wird bei -78° C innerhalb von 20 min. tropfenweise mit 0.12 g (0.66 mmol) Me₃P=CH₂, gelöst in 10 ml Ether, versetzt. Unter Rühren wird das Reaktionsgemisch im Verlaufe von 2.5 h auf Raumtemperatur gebracht, danach der farblose Niederschlag von [Me₄P]SO₃F (0.12 g, 96%) abgetrennt und dieser mit 15 ml Et₂O gewaschen. Nach Eindampfen der vereinigten Filtrate im Vakuum bis zur Trockene wird der Rückstand in 5 ml Benzol/Pentan (1/3) aufgenommen und durch Abkühlen auf -10° C braungelbes, kristallines 4a gewonnen. Ausb. 0.19 g (95%). Schmp. 65°C (Zers.). Gef. C, 49.83; H, 5.96. C₁₃H₁₉CrO₃P (306.26) ber.: C, 50.98; H, 6.25%. Molmasse 306 (MS bez. auf ⁵²Cr).

5. cis / trans-Dicarbonyl(η^5 -cyclopentadienyl)[η^l -2-(methoxy)vinyl](trimethylphosphan)molybdän(II) (**4b**). Analog zu 4. werden aus 519 mg (1.20 mmol) **3b** und 108 mg (1.20 mmol) Me₃P=CH₂ 387 mg (92%) **4b** synthetisiert. Gelbe Kristalle. Schmp. 28°C. Gef. C, 44.54; H, 5.46. C₁₃H₁₉MoO₃P (350.21) ber.: C, 44.59; H, 5.47%. Molmasse 350 (MS bez. auf ⁹⁸Mo).

6. cis / trans-Dicarbonyl(η^5 -cyclopentadienyl)[η^1 -(methoxy)-1-propenyl(trimethylphosphan)molybdän(II) (4c). Analog zu 4. werden aus 1.80 g (3.88 mmol) 3c und 0.35 g (3.88 mmol) Me₃P=CH₂ 1.24 g (88%) 4c erhalten. Schmp. 96°C. 4c: Gef. C, 45.94; H, 5.72. C₁₄H₂₁MoO₃P (364.23) ber.: C, 46.17; H, 5.81%. Molmasse 366 (MS, bez. auf ⁹⁸Mo).

7. cis / trans-Dicarbonyl(η^5 -cyclopentadienyl)[η^1 -(methoxy)-1-propenyl](trimethylphosphan)wolfram(II) (4d). Wie in 4. werden aus 1.77 g (3.22 mmol)/0.34 g (0.62 mmol) 3d und 0.29 g (3.22 mmol) Me₃P=CH₂/0.10 g (0.62 mmol) Me₃P=CHSiMe₃ 1.22 g (84%)/0.23 g (82%) 4d erhalten. Schmp. 104°C. Gef. C, 36.49; H, 4.37. C₁₄H₂₁O₃PW (452.14) ber.: C, 37.19; H, 4.68%. Molmasse 452 (MS, bez. auf ¹⁸⁴W).

8. Tricarbonyl(η^5 -cyclopentadienyl)[η^1 -2-(methoxy)vinyl]wolfram(II) (6). Analog zu 4. werden aus 0.58 g (1.20 mmol) 5 und 0.11 g (1.20 mmol) Me₃P=CH₂ 0.24 g (50%) 6 synthetisiert. Gelbe Kristalle. Schmp. 63°C. Gef. C, 33.51; H, 2.62. C₁₁H₁₀O₄W (390.05) ber.: C, 33.87; H, 2.58%. Molmasse 390 (MS bez. auf ¹⁸⁴W).

Dank

Die Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg und der Fonds der Chemischen Industrie unterstützten diese Arbeiten durch Sachmittel. G. G. dankt dem Fonds der Chemischen Industrie für die Gewährung eines Doktorandenstipendiums. Den Firmen Hoechst AG, Werk Knapsack und BASF AG, Ludwigshafen sei für Chemikalienspenden gedankt.

Literatur

- 1 G. Grötsch und W. Malisch, J. Organomet. Chem., 246 (1983) C49.
- 2 Diese Ergebnisse entstammen der geplanten Dissertation G. Grötsch (Universität Würzburg).
- 3 G. Grötsch und W. Malisch, J. Organomet. Chem., 246 (1983) C42.
- 4 T.F. Block, R.F. Fenske und C.P. Casey, J. Am. Chem. Soc., 97 (1975) 144.
- 5 (a) A.R. Manning, J. Chem. Soc. A, (1967) 1984; (b) J.W. Faller und A.S. Anderson, J. Am. Chem. Soc., 91 (1969) 1550; (c) C. Mays und S.M. Pearson, J. Chem. Soc. A, (1960) 2291.
- 6 (a) W. Malisch, H. Blau und F.J. Haaf, Chem. Ber., 114 (1981) 2956; (b) H.G. Alt und M.E. Eichner, J. Organomet. Chem., 212 (1981) 397; (c) Neu hergestellt wurde 2a: Gelbe Kristalle, Schmp. 95°C.

¹H-NMR (C_6H_6): δ (ppm) 4.44 (s, 5H, C_5H_5), 2.85 (s, 3H, CH₃), 1.04 (d, ²*J*(HCP) 9.0 Hz, 9H, CH₃P). ³¹P-{¹H}-NMR (C_6D_6): δ 51.59 ppm. IR (Pentan): ν (CO) 1927(m), 1850(s), ν (C(O)) 1649(m) cm⁻¹. Gef. C, 48.98; H, 5.61. C₁₂H₁₇CrO₃P (292.24) ber.: C, 49.32; H, 5.83%. Molmasse 292 (MS bez. auf ⁵²Cr).

- 7 (a) C.P. Casey, C.R. Cyr und R.A. Boggs, Syn. Inorg. Metal-Org. Chem., 3 (1973) 349; (b) P.M. Treichel und K.P. Wagner, J. Organomet. Chem., 88 (1975) 199; (c) 5: Gelbe Kristalle, Schmp. 97°C. ¹H-NMR (CD₃CN): δ (ppm) 6.01 (s, 5H, C₅H₅), 4.51 (s, 3H, OCH₃), 3.26 (s, 3H, CH₃). IR (CH₃CN): ν (CO): 2060(m), 1960(vs). Gef. C, 26.06; H, 2.33. C₁₁H₁₁FO₇SW (490.1<u>1</u>) ber.: C, 26.96; H, 2.26%.
- 8 Als Zwischenstufe kann auch das Metallacyclopropen Cp(CO)(Me₃P)M=C(OMe)C(H)Me diskutiert werden, das aus 3c, 3d durch CO-Eliminierung entsteht. Dieses dürfte vor allem für die thermische Isomerisierung von Bedeutung sein. Vgl. hierzu auch S.R. Allen, P.K. Baker, S.G. Barnes, M. Bottrill, M. Green, A.G. Orpen und A.J. Welch, J. Chem. Soc. Dalton Trans., (1983) 927.